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Abstract— This paper presents a robust and efficient way of tuning PID controller using 

different variants of differential evolution (DE) algorithms for control of antenna positioning 

system and external disturbance mitigation. Quite a number of failure in complex control systems 

e.g. flights is attributed to external disturbance resulting from natural events, and sometimes from 

man oriented events. Hence controllers should not only be rated based on their ability to track the 

command input (target), but also in their ability to mitigate the effects of external disturbance.  

Five DE variants were implemented in this experiment, out of which DE/rand/2/JDE/bin appear to 

be optimal in addressing the problem, with maximum disturbance amplitude of 0.00073 which 

decayed rapidly to zero within 3 seconds, peak overshot of 0.0167, rise time of 0.04sec, and 

settling time of 0.08sec. This has an overall cost or objective fitness function of 0.034. The second 

optimal optimizer is DE/rand/1/bin with maximum disturbance amplitude of 0.00079. 

Keywords: —Differential evolution algorithms, PID controller, Step response, Ziegler–Nichols 

tuning method, optimization, objective fitness function.   

 

1. INTRODUCTION 

ONe of the major challenge of any 

positioning control system is the ability to 

coup with unpredictable disturbance and 

changes resulting from within the system or 

its domain. Antenna positioning system are 

face with different challenges among which 

is disturbance from natural events such as 

wind. The aim of this research is to design an 

intelligent control schemes to position the 

antenna in the direction of the main lobe for 

optimum reception/transmission in a 

dynamically changing environment. 

2. OPTIMIZATION OR TUNING 

ALGORITHMS 

A brief description of the optimization 

algorithms implemented are presented in this 

section. We explore the advantages of global 

search capability of population based 

differential evolutionary algorithms variants 

to evolve the gains of the PID controller. The 

complexity of many heuristic controllers 

becomes increasingly complicated due to 

meta parameters (free parameters) in the 

model or controller frame work that govern 

their behaviour and efficiency in optimizing 

a given problem. How best a given controller 

can solve a given problem, depends on the 

correct choice of the meta parameters. The 

values of those parameters are problem 

dependent, thus for each problem, those 

parameters need to be fined tune to get the 

optimum or near optimum. The tuning pose 
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another optimization problem. The PID gains 

of the antenna positioning system depicted in 

this paper were optimized using population 

based randomization optimization 

algorithms. 

 

3. DIFFERENTIAL EVOLUTION (DE) 

DE are population based direct search 

algorithms used to solve continuous 

optimization problems. DE aims at evolving 

NP population of D dimensional vectors 

which encodes the G generation candidate 

solutions Xi,G=X1
i,G … XD

i,G towards the 

global optimum, where i=1, … NP. The 

initial candidate solutions at G=0 are evolves 

in such a way as to cover the search space as 

much as possible by uniformly randomizing 

the candidates within the decision space 

using Eq (1) [6][7][3]. 

 

𝑋𝑖,𝐺 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(1,0). (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)      

(1) 

Where 𝑖 = 1, . . . , 𝑁𝑃,𝑋𝑚𝑖𝑛 = 𝑋𝑚𝑖𝑛
1  . . . 𝑋𝑚𝑖𝑛

𝐷 , 

𝑋𝑚𝑎𝑥 = 𝑋𝑚𝑎𝑥
1  . . . 𝑋𝑚𝑎𝑥

𝐷  and rand(1,0) is a 

uniformly distributed random number 

between 0 and 1. 

3.1 Mutation 

For every individuals (target vectors) Xi,G at 

generation G, a mutant vector Vi,G called the 

provisional or trial offspring is generated via 

certain mutation schemes [6][7][3]. The 

mutation strategies implemented in this study 

are: 

DE/rand1 

𝑉𝑖,𝐺 = 𝑋𝑟1,𝐺 + 𝐹. (𝑋𝑟3,𝐺 − 𝑋𝑟2,𝐺) (2) 

 

 DE/best/1: 

𝑉𝑖,𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹. (𝑋𝑟2,,𝐺 − 𝑋𝑟1,𝐺) (3) 

 

DE/rand-to-best/1: 

𝑉𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹. ( 𝑋𝑏𝑒𝑠𝑡,𝐺 − 𝑋𝑟𝑖,𝐺) +

𝐹. (𝑋𝑟2,𝐺 − 𝑋𝑟1,𝐺)   (4) 

 

DE/best/2: 

𝑉𝑖,𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹. (𝑋𝑟2,,𝐺 − 𝑋𝑟1,𝐺) +

 𝐹. (𝑋𝑟4,𝐺 − 𝑋𝑟3,𝐺)   (5) 

 

Where the indexes r1, r2, r3 and r4 are 

mutually exclusive positive integers and 

distinct from i. These indexes are generated 

at random within the range [1 - PN]. Xbest,G is 

the individual with the best fitness at 

generation G while F is the mutation 

constant.          

 

3.2 Cross Over 

After the mutants were generated, the 

offspring Ui,G are produced by performing a 

crossover operation between the target vector 

Xi,G and its corresponding provisional 

offspring Vi,G. The two crossover schemes 

i.e. exponential and binomial crossover are 

used in this study for all the DE algorithms 

implemented. The binomial crossover copied 

the jth gene of the mutant vector Vi,G to the 

corresponding gene (element) in the 

offspring Ui,G if rand(0,1) ≤ CR or j=jrand. 

Otherwise it is copied from the target vector 

Xi,G (parent). The crossover rate CR is the 

probability of selecting the offspring genes 

from the mutant while jrand is a random 

number in the range [1 - D], this ensure that 

at least one of the offspring gene is copied 

from the mutant. If CR is small it will result 
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in exploratory moves parallel to a small 

number of axes of the decision space .i.e. 

many of the genes of the offspring will come  

from its parent than from the mutants, 

consequently the offspring will resemble its  

parent. In this way, the DE will serve as a 

local searcher as it bear strong exploitative  

capabilities than being explorative. On the 

other hand, large values of CR will lead to 

moves at angles to the search space’s axes as  

the genes of the offspring are more likely to 

come from the provisional offspring (mutant  

vector) than its parent. This will favour 

explorative moves. The Binomial crossover  

is represented by Eq(6).   

{
𝑉𝑖𝐺

𝑗
 𝑖𝑓  𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑋𝑖𝐺
𝑗

 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
 (6) 

For exponential crossover, the genes of the 

offspring are inherited from the mutant 

vector Vi,G starting from a randomly selected 

index j in the range [1 - D] until the first time 

rand(0,1) > CR after which all the other genes 

are inherited from the parent 

Xi,G[6][7][3].The exponential crossover is as 

shown in Fig 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Exponential crossover 

 

 

 

 

 

 

 

3.3 Selection process 

When the offspring UiG is birthed via the 

crossover scheme, to determine whether the 

offspring should replace its parent XiG or not 

in the next generation, a greedy selection 

schemes based on Darwinian Theory is 

employed. The cost functions (commonly 

referred to as the fitness functions) f(UiG) and 

f(XiG) of the offspring and its parent 

respectively are computed and compared. If 

f(UiG) < f(XiG) the offspring will replaced its 

parent in the next generation i.e. XiG+1 = UiG 

otherwise its parent will be allowed to 

continue in the next generation XiG+1=XiG. 

This scheme is based on the principles of 

survival of the fittest. The fitness function 

used in this research is the weighted sum of 

the overshot (over or under shot), rise time 

and the settling time when a unit step input 

command is used. 

 

  

𝑈𝑖𝐺 =  𝑋𝑖𝐺  

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 = 𝑟𝑎𝑛𝑑𝑖(1, 𝐷) 

𝑈𝑖𝐺
𝑗

=  𝑉𝑖𝐺
𝑗

 

𝐾 = 1 

𝒘𝒉𝒊𝒍𝒆 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑎𝑛𝑑 𝐾 < 𝐷 

𝑈𝑖𝐺
𝑗

= 𝑉𝑖𝐺
𝑗

 

𝑗 = 𝑗 + 1 

𝒊𝒇 𝑗 = 𝐷 𝒕𝒉𝒆𝒏 

𝑗 = 1 

𝒆𝒏𝒅 𝑖𝑓 

𝐾 = 𝐾 + 1 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 
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3.4 jDE 

As is always the case in many optimization 

problems to be solved using heuristic 

optimization algorithms, the best optimizer 

for the particular problem is often not known 

prior to trial. Hence we deem it fit to try one 

of the famous variant of DE called jDE. The 

jDE scheme is a popular way of enhancing 

DE performance with a moderate 

programming effort. The jDE algorithm 

enhance the pool of DE search moves by 

including a certain degree of randomization 

into the original DE framework. In jDE, the 

values of mutation and crossover are encoded 

within each individual candidate solution. 

For example, the generic individual Xi will 

be composed of 

𝑋𝑖 = (𝑋𝑖[1], 𝑋𝑖[2], … . , 𝑋𝑖[𝐷], 𝐹𝑖 , 𝐶𝑅𝑖) (7) 

Hence, at every generation, the offspring is 

generated for each individual with the 

parameters Fi and CRi belonging to its parent. 

Furthermore, these parameters are 

periodically refreshed on the basis of the 

following randomized criterion [6][7]: 

𝐹𝑖 = {
𝐹𝐿 + 𝐹𝑈 . 𝑟𝑎𝑛𝑑1  𝑖𝑓 𝑟𝑎𝑛𝑑2 < 𝒯1

𝐹𝑖             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
(8) 

𝐶𝑅𝑖 = {
𝑟𝑎𝑛𝑑3 𝑖𝑓 𝑟𝑎𝑛𝑑4 < 𝒯2

𝐶𝑅𝑖              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
  (9) 

Where randj are uniform pseudo-random 

values between 0 and 1. 𝒯1 and 𝒯2 are 

constant values which represent the 

probabilities of updating the parameters Fi 

and CRi respectively, FL and FU are constant 

values which represent the minimum value 

that F could take and the maximum variable 

contribution to F, respectively. 

3.5 Fitness Function Evaluation 

The optimization problem presented in this 

paper is a multi-objective optimization 

problem. This is because there are three cost 

functions to be minimised i.e. the maximum 

overshot (Mo), rise time (Tr) and settling time 

(Ts). In order to get a generalized and robust 

controller gains, the problem is converted to 

single objective problem with one cost 

function consisting of the weighted sum of 

the three objective functions, Eq (10). The 

weights depends on the important or cost of 

risk resulting from that particular 

performance index. This approach is robust 

because different models can be evolved by 

just changing the weight to meet up with 

setting performance specifications or criteria. 

𝛾 = 𝛼𝑜𝑀𝑜 + 𝛼𝑟𝑇𝑟 + 𝛼𝑠𝑇𝑠  (10) 

Where: γ is the fitness function, Mo is the 

maximum overshot, Tr is the rise time and Ts 

settling time, while αo, αr, and αs are their 

weights respectively. It is a generally 

acceptable practice that the sum of the 

weights should be 1 i.e. 𝛼𝑜 + 𝛼𝑟 + 𝛼𝑠 = 1. 

This constrain is heuristics and empirical, 

hence the setting of the weights is problem 

dependent and cannot be generalised. For this 

research, after a repeated manual tuning, the 

following values were found to be optimal 

with Mo having the highest priority, αo=0.6, 

αr=0.2, and αs=0.2. For this application, the 

maximum value a weight can take is 1.  
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4. PROPORTIONAL PLUS 

INTEGRAL PLUS DERIVATIVE (PID) 

CONTROLLER 

It is interesting to know that nearly half of the 

industrial controllers used today are PID or 

modified PID or derivatives of PID 

controllers.  Some intelligent controllers e.g. 

Fuzzy logic or adaptive fuzzy logic are 

derivatives of basic PID i.e. they make use of 

the error and its derivative (rate of change of 

the error). There are different variant of the 

PID controller, the one used in this research 

is given by equation (11) while the transfer 

function Gc(s) of the controller is depicted by 

Eq (12), [2][1][4]. A proportional controller 

will have the effect of reducing the rise time, 

but will not eliminate the steady-state error. 

Because of the present of pole at the origin 

introduced by the integral controller, the 

integral control will have the capability of 

eliminating the steady-state error, but it may 

make the transient response worse. The 

derivative control will have the effect of 

increasing the stability of the system, 

reducing the overshoot, and improving the 

transient response. The derivative controller 

predict future error using the rate at which the 

error is changing while the integral captured 

the cumulative effects of past errors to 

improve the system performance. 

𝑃𝐼𝐷 = 𝐾𝑝(𝑒(𝑡) + 
1

𝑇𝑖
∫ 𝑒(𝑡)

𝑡

𝑡0
𝑑𝑡 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
)

 (11) 

𝐺𝑐(𝑠) = 𝐾𝑝(1 + 
1

𝑇𝑖𝑠
 +  𝑇𝑑𝑠)  (12) 

Where: t is time, e(t) is present error at time 

t, Kp is the proportional gain while Ti and Td 

are integral and derivative time constants 

respectively, s is Laplace complex notation. 

4.1 Tuning of the PID gains (Kp, Ti and 

Td) Ziegler–Nichols 

The process of selecting the controller 

parameters Kp, Ti and Td to meet a given 

performance specifications is known as 

controller tuning. Different variant of 

population based differential evolution (DE) 

algorithms were used to evolve the PID 

gains. One of the major challenge is to define 

the decision search space i.e. the range within 

which each of the meta parameters (Kp, Ti 

and Td) of the controller should be searched. 

To address this problem, Ziegler–

Nicholstuning method was used to obtain the 

centre of the radius of the search space. The 

Ziegler–Nichols reference gains were 

obtained using the mathematical model of the 

antenna positioning system shown in Fig. (2). 

The centre of the radius for each of the gains 

Kp, Ti and Td are given by equations (13), 

(14) and (15) respectively [2]. 

𝐾𝑝 = 0.6𝐾𝑐𝑟   (13) 

𝑇𝑖 = 0.5𝑃𝑐𝑟    (14) 

𝑇𝑑 = 0.125𝑃𝑐𝑟   (15) 

Where Kcr and Pcr are the critical gain and 

critical frequency for self-sustained 

oscillation of the system. 

The decision search space for each of the 

gains were obtained as follows: 

𝐾𝑝(𝑠𝑝𝑎𝑐𝑒) = [𝛼𝑚𝑖𝑛𝐾𝑝, 𝛼𝑚𝑎𝑥𝐾𝑝] (16) 

𝑇𝑖(𝑠𝑝𝑎𝑐𝑒) = [𝛽𝑚𝑖𝑛𝑇𝑖 , 𝛽𝑚𝑎𝑥𝑇𝑖]  (17) 

𝑇𝑑(𝑠𝑝𝑎𝑐𝑒) = [µ𝑚𝑖𝑛𝑇𝑑 , µ𝑚𝑎𝑥𝑇𝑑]  (18) 

Kp, Ti and Td are given by equations (13), 

(14) and (15) respectively while after a 



IJSER

 
 

6 
 

manual tuning, the minimum and maximum 

values of α, β and µ were obtained as follows: 

𝛼𝑚𝑖𝑛 = 0.4, 𝛽𝑚𝑖𝑛 = 0.2, µ𝑚𝑖𝑛 =

0.2,  𝛼𝑚𝑎𝑥 = 5, 𝛽𝑚𝑎𝑥 = 4, µ𝑚𝑎𝑥 = 4 

 

5. MATHEMATICAL MODEL OF 

THE ANTENNA POSITIONING 

SYSTEM 

The rotation of the antenna is achieved using 

DC motor. The aim is to ensure that the 

antenna (dish) is in line of side with the main 

lobe for maximum reception.  

 

𝑉 = 𝑅𝑎𝐼𝑎 + 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝐸𝑏   (19) 

𝑇 = 𝐽
𝑑𝑤

𝑑𝑡
+ 𝐹𝑤    (20) 

𝐸𝑏 = 𝐾𝑏𝑤     (21) 

𝑇 = 𝐾𝑡𝐼𝑎     (22) 

𝑤 =
𝑑ϴ 

𝑑𝑡
     (23) 

Where V is motor terminal supply voltage, Ra 

armature resistance, La is armature 

inductance, Ia is armature current, Eb is back 

emf (electromotive force), T is the torque, w 

is the angular speed in rad/s, J is the inertia 

constant while F is the viscose constant, Kb is 

the back emf constant, t is time and ϴ is 

angular position in rad. The block diagram 

shown in Fig. 2 was obtain using equations 

(19) to (23) along with the controller, where 

ϴR is the command reference input 

angle while ϴ is the actual output. 

6. RESULTS 

Each of the DE variant is run for 600 

generations consisting of 10 potential 

candidate solutions.  At the end of the 

generation, the must fitted (best) candidate is 

used to set the PID gains. The objective 

fitness function (cost function) used during 

the training is the weighted sum of the 

maximum overshot, rise time and settling 

time, Eq. (10). The evolved best candidate 

solution was used to control the antenna 

positioning system using three different 

approaches, i.e. the system was tested using 

standard ram and parabolic input command. 

Thirdly, a real world scenario was modelled 

as a command input to demonstrate how the 

output of the system can track the target 

input, and at the same time mitigating the 

effects of external disturbance. The 

performance index used to evaluate the 

accuracy of the system in tracking the 

command in put is the root mean square error 

(RMSE) given by Eq. (24). It is interesting to 

note that the fact that the system depicted 

good performance for standard ram and 

parabolic input with low RMSE does not 

necessarily mean that the system will 

perform optimally when subjected to real 

world scenario with unpredictable input 

commands, coupled with disturbance 

resulting from natural and man oriented 

sources. This is revealed when the untune 

controller obtain directly using Ziegler–

Nichols method was used. The RMSE of ram 

and parabolic command using untune PID for 

a given DE variant shown in Fig. 6 and Fig. 

5 are 0.0164 and 0.0598 respectively while 

for the tuned PID are 0.0212 and 0.0042 

respectively. But when the tuned and the 

untune PIDs were tested using real world 

command input, the untune PID perform 
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poorly with RMSE of 6.653 while the tuned 

PID followed the command input closely 

with RMSE of 1.9611 as shown in Fig. 4. 

More importantly, the effects of external 

disturbance which is one of the key cost 

function in this research, were highly 

attenuated with maximum disturbance 

amplitude of 0.00073 which decayed rapidly 

to zero within 3 seconds as shown in Fig 7. 

This  research also validate that PID gains 

obtained using Ziegler–Nichols method may 

not be the optimum but is a valuable tool for 

obtaining the radius of the search domain 

within which the optimum or near optimum 

are likely to be found. The details of the 

numeric results obtained from the DE 

variants implemented in this research are 

shown in table 1. Five DE variants were 

implemented. Where bin refer to Binomial 

crossover and exp refer to exponential 

crossover.  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ϴ𝑅𝑖 − ϴ𝑖)

2𝑁
𝑖=1   (24) 

Where: RMSE is the root mean square error, 

N is the number of simulation time steps, ϴRi 

and ϴi are the command input and the 

actual output at time index I 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Block diagram of the antenna 

positioning system 
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Fig. 3: Unit step response using: tuned PID 

and untune PID  

 

Fig 4: Real world command 

input using tuned and untune PID 

 

Fig. 5: Parabolic input command 

 

Fig. 6: Ram input command 

 

Fig. 7: Disturbance Step Response  

 

Fig. 8: DE Optimization Generation 

Fitness Function 
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Table 1: Performance of the various DE variants implemented  

Algorithms Command 

RMSE 

Disturbance 

Max Unit Step 

Response 

Amplitude 

Max 

Overshot 

Rise 

Time 

Settling 

Time 

Fitness 

DE_rand_1_bin 1.844532561 0.00079 0.0163 0.02 0.09 0.0318 

DE_rand_1_JDE_bin 2.015262894 0.00170 0.0128 0.03 0.04 0.0217 

DE_rand_1_exp 3.902446441 0.00110 0.1832 0.11 0.46 0.2239 

DE_rand_1_JDE_exp 1.838911041 0.00120 0.0339 0.01 0.33 0.0883 

DE_rand_2_JDE_bin 2.268525662 0.00073 0.0167 0.04 0.08 0.0340 

 

Conclusion  

DE proved to be an efficient optimizer for 

tuning the PID gains for tracking of the 

command input (target), and for mitigation of 

the effect of external disturbance. With 

DE/rand/2/JDE/bin algorithm emerging as the 

best for mitigation of external disturbance, 

with maximum disturbance amplitude of 

0.00073 followed by DE/rand/1/bin with 

disturbance amplitude of 0.0079. But 

DE/rand/1/bin tract the command input 

more closely (accurately) than 

DE/rand/2/JDE/bin with RMSE of 1.8445. 

Hence, the recommended optimizer for this 

problem that effectively tracked the target 

command, and also for efficient mitigation of 

the effect of external disturbance is 

DE/rand/1/bin. 
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